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The voltage-driven dynamics of a stiff polymer through a nanopore are treated with a bend elastic model. In
contrast to flexible polymers described by a stretch elasticity, bend elastic chains can be oriented in an external
field, here the anchoring field created by the pore atoms. The trajectory of the chain is calculated using the
Langevin equation of motion. The dynamical equation is solved by a normal mode analysis of the elastic curve
with free ends. Interaction with the pore walls acts to align the chain, and with the electric field induced inside
the pore controls the translocation time. Application of a force proportional to the distance of the exit from the
end of the pore such as an optical trap slows down the motion, and reduces the chain response to the wall
potential and the extension along the pore axis. DNA is a well-known semirigid polymer, and a comparison is
made to the molecular dynamics simulation of translocation of DNA through a synthetic nanopore.
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I. INTRODUCTION

Industrial applications based on the flow of dilute solu-
tions of polymers in pores of diameters ranging from nanom-
eters to micrometers are ubiquitous. Recent work has con-
centrated on the dynamics and structure of biopolymers, in
particular as a tool for the analysis and manipulation of DNA
sequences �1,2�. Dynamics modeling should lead to predic-
tive models of how macromolecules behave in microfluidic
flows, useful for device design and optimization. In order to
advance the technology it is essential to characterize the con-
formations of the macromolecule and the events taking place
inside the pore in detail. Langevin dynamics is most com-
monly used and is based on rapid collisions of solvent and
pore wall molecules with the diffusing Brownian particle
�3–9�. The resulting loss of information with respect to a
detailed molecular dynamics simulation �10–12� is offset by
a relative ease of calculation. In order to fully describe dy-
namic phenomena either by analytical calculation or by nu-
merical simulation, multiscale methods have also been pro-
posed, and especially interesting is a first-principle
calculation of the chemical structure of the single macromol-
ecule to determine the parameters of the simple model used
in an analytical method for the dynamics.

The dynamics of a polymer chain span a large range of
time and length scales, from picoseconds and angstroms for
the individual molecule segments to hours and centimeters
for domain motion in polymer crystals. For example, in the
spectrum of vibrations of a polymer on the scale of inter-
atomic vibrations the series of discrete high-frequency lines
is characteristic of the motion of the molecular building
blocks of the chain. On the macroscopic level of acoustic
waves, the details of the individual chain structure are not
essential to the collective low-frequency modes. A con-
tinuum monomer density distribution with reasonable elastic
coefficients will suffice to describe the wide spectrum of
sound propagation in an elastic material. Of special interest
is the range between these two limits. The relaxation of chain

deformation superimposed on the drift caused by external
sources determines the dynamics in dilute solution. Calcula-
tions assume a simple model chain structure with reasonable
values of single chain friction, segment length, or elastic
spring constants. Models that have been used with success
are the elastic chain, the bead spring, or the bead rod poly-
mer �13�. Unfortunately, only the dynamics of flexible chains
are easy to manipulate and only if the motion of a single
chain is decoupled from the surrounding chains. Most mac-
romolecules are semirigid and resist bending, many have a
helix structure, and this is especially true of the natural and
biological polymers such as DNA, many of which even form
liquid crystal phases.

The elastic wormlike chain has been used successfully to
describe equilibrium properties of semirigid polymers
�14–16�. The complex chemical structure of the macromol-
ecule is replaced by an elastic chain of degree of polymer-
ization N �or total arclength L�, of stretch elastic coefficient
�, and bend elastic coefficient �. The polymer conformation
is described by a continuous chain given by positions r��s� at
arclength s from the first monomer, with bend deformation
described by the change in tangent vector d2r� /ds2 along the
chain and stretch described by the change in position vector

dr� �s� /ds. Early work already considered the coupling of the
tangent vector to the local orientation and the validity of the
relation valid for a geometric curve �dr� /ds�=1 �17–19�. The
problem is still being explored, as well as the need to include
bend and torsion of polymer chains in dynamic properties
�20,21�.

In rigid and semirigid systems the long-range intermo-
lecular interaction depends on the relative orientation of the
particles. In particular, in the neighborhood of a surface, an
anchoring force determines a preference for a fixed direction
relative to the surface �13,22–25�. In nanopores, the range of
wall effects can easily extend over the whole pore width. The
nature of the force can be steric, chemical with formation of
covalent or ionic bonds, or electrostatic with formation of a
surface charge or dipolar with induced or permanent dipoles.
External fields such as an imposed electric field can also
orient the semirigid polymer by coupling to the induced di-
poles along the chain backbone �26�. For a charged polyelec-*tenbosch@unice.fr
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trolyte such as DNA, the electric field mainly works to pull
the polymer through the pore, accelerating the otherwise
slow random diffusion.

II. THEORY AND RESULTS

A. The Langevin equation

The Langevin equation of motion of the polymer inside
the pore is

m
�2r��s,t�

�t2 + m�
�r��s,t�

�t
+ �

�4r��s,t�
�s4 − �

�2r��s,t�
�s2 − F� − A� �s,t�

= 0. �1�

The monomer mass is m and the first term is the inertia. The
second term is the internal friction force. The next terms are
the stretch and bend elasticity for the continuous elastic

chain. The external force is given by F� =FW
� +FE

� ; here the

pore wall interaction F� W and the electric field F� E. The last

term on the left is the random force, here white noise A� �s , t�.
In stiff polymer chains the interaction between the poly-

mer segments and the pore wall atoms can be expanded in
spherical harmonics Ylm�u� in the orientation dr� /ds=u��s , t�
of the monomer at position r��s , t� �22,27�. The position-
dependent mean field component of order � contains a short-
range repulsive interaction and a long-range attraction per-
pendicular to the pore walls, and the derivative along the
pore axis yields an effective friction force. Isotropic interac-
tions will not be considered in the case of a pore width suf-
ficiently large ��2 nm� and pore length sufficiently small.
For a pore width larger than the diameter of the monomers,
the isotropic potential �=0 forms a weak attractive well
close to the pore walls and contributes a weak corrugation
force. Wide pores also avoid significant overlapping and in-
teraction between monomers during translocation �28�. The
main effect of the pore walls is then to orient the monomers
parallel to the axis along z of the nanopore �10�. Due to
symmetry of the pore entrance and exit and of the head and
tail polymer chain, the first orientation-dependent term for
�=2 is then a function of uz

2. The force in the z direction is
then

FW,z =
W

2
�3� �z

�s
�2

− 1	 . �2�

For orientation parallel to z, the average force must be posi-
tive and W�0. The model mean field interaction parameter
W describes the dominant friction force for a given distribu-
tion of pore atoms. For anchoring to occur along the pore
axis, roughness �variations along the z axis� of pore walls is
essential �29�. The average anchoring force is proportional to
the stretch elastic stress tensor and vanishes for random ori-
entation of bend elastic chains and for flexible Rouse chains.

The membrane with a single pore is placed in the center
of the translocation cell. A constant voltage is applied be-
tween the two electrodes of the cell. Surface charges �� are
induced on the surface of the dielectric membrane material
by the external field E0=−� /�0, strongly distorting the field

at the pore entrance at z=0 �30–32�. A model for the electric
field, discussed in the Appendix, is

E�z� = −
�

�0�m
� z

2
z2 + R2
+

H − z

2
�H − z�2 + R2
+

�m

�s
� . �3�

A uniform charge distribution e�0 on the polymer chain
couples to the screened applied electric field; the electrostatic
interaction between monomers is also screened by the coun-
terions in the solvent �33,34�. Inside the pore, a coupling
term pzdE�z� /dz with the permanent dipoles of the polymer
of dipole moment pz must be included in the total electro-
static force along z. An expansion is used and FE,z=F0
+F1z. Using a parabolic fit to E�z� in Eq. �3�, F0 and F1 are
found as functions of the parameters of E�z�:

F0 = eE�0� −
4pz

3H
�E�H/2� − E�0�� �4�

and

F1H = −
4

3
�E�H/2� − E�0���e −

2pz

H
� . �5�

The contribution of the dipole coupling term to F0 and F1
is of the order of 5% or less for the model pore electric field
of Eq. �3� and the effective charge and dipole moments of
DNA �1�. The effect could be larger if the gradient of the
pore electric field is amplified, for example by pore geom-
etry. Experiments have been made in the presence of an op-
tical trap placed at the end of the pore. A field is created
proportional to the distance of the chain from the pore end
and an additional term proportional to the strength of the trap
is contained in F1�0. If the polymer segments have an an-
isotropic polarizability 	
, the external electric field couples
to the monomer orientation uz�s� through the interaction

�0	
E� 2�3�uz�2−1� /6 �35�. The strength of the resulting force
is of the order of 0.01kT or less in reasonable applied fields
and much weaker than the effect of the pore wall atoms.

The parameters of the model are the geometry of the cy-
lindrical pore �radius R and length H�, the total length L of
the polymer, the monomer size a, the elastic coefficients for
bend � and stretch �, the monomer dipole moment p� and
effective charge e of the polymer, the external electric field
E0, the dielectric constants �m ,�s of the pore membrane and
the solvent and friction constant � of the solvent, and finally
the strength W of the pore wall anchoring force. The inter-
action parameters are effective parameters which can be fit-
ted to a given experimental system and for a given polymer
are dependent on the material of the pore walls, the solvent
and concentration of free ions. For example for DNA � /kTa
can vary between 50 and 150 nm for decreasing salt concen-
tration �4,36,37�.

The model equation along the pore axis is then

m
�2z�s,t�

�t2 + m�
�z�s,t�

�t
+ �

�4z�s,t�
�s4 − �

�2z�s,t�
�s2

−
W

2
�3� �z

�s
�2

− 1	 − F0 − zF1 = A�s,t� . �6�

The random thermal force for stiff chains satisfies the usual
conditions;
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�A�s,t�� = 0 �7�

�A�s,t�A�s�,t��� = 4kTam���t − t����s − s�� . �8�

Perpendicular to the pore axis in the x and y directions, the
motion is that of a free chain Fx=Fy =0. Outside the pore,

W=0 and F� =eE� 0 /�s.

B. Solution for the polymer modes

To investigate the dynamics including changes in confor-
mation of the chain, an expansion in the bend eigenfunctions
is used �38�:

z�s,t� = 

p=0

up�s�qp�t� , �9�

where qp�t�=�ds z�s , t�up�s� /L. The eigenfunctions up�s� are
solutions of

�
�4up�s�

�s4 − �
�2up�s�

�s4 = ��
p
4 − �
p

2�up�s� �10�

and satisfy the boundary conditions for free ends of the poly-
mer chain. The set of eigenfunctions is orthonormal:
�ds up�s�up��s� /L=��p , p��.

1. Case p�0

The eigenvalues are 
p and the eigenfunctions for p�0
are

up = c0 exp�
ps� + c1 exp�i
ps� + c2 exp�− 
ps�

+ c1
* exp�− i
ps� . �11�

The coefficients are found from minimization of the energy
and normalization of the eigenfunctions. The eigenfunctions,
shown in Fig. 1, are eigenfunctions of parity �21� and parity
is conserved during translocation. In the dynamic equation
�6� the driving force is invariant under the parity operation
s→−s. The eigenfunctions of parity z�s�= �z�−s� are thus
eigenfunctions of the dynamic equation �39�. The eigenval-
ues are determined by the boundary conditions.

For odd values of p=1,3. . ., the functions are symmetri-
cal:

up�s� = cos�
ps�/�cos 
pL/2� + cosh 
ps/�cosh 
pL/2�

with

�tan 
pL/2�/�tanh 
pL/2� = − ��
p
2 − ��/��
p

2 + �� .

For even p=2,4. . ., the functions are antisymmetrical:

up�s� = sin�
ps�/�sin 
pL/2� + sinh 
ps/�sinh 
pL/2�

with

�tan 
pL/2�/�tanh 
pL/2� = ��
p
2 + ��/��
p

2 − �� .

The eigenvalues are well approximated by 
p= �2p
+1�
 /2L. For odd parity, an additional eigenvalue is found
at 
p=
 /L. This solution disappears for �=0.

The equation of motion for the time-dependent functions
qp�t� is found from Eq. �6�. An expansion in the wall anchor-
ing field is used to first order in W:

�2qp�t�
�t2 + �

�qp�t�
�t

+ ���/m�
p
4 − ��/m�
p

2 − F1/m�qp�t�

= B0�p,t� + B1�p,t� . �12�

The frequency of the polymer mode p�0 is

�1,2�p� = − �/2 � �
�2 − 4���/m�
p
4 − ��/m�
p

2 − F1/m��/2.

�13�

The solution for qp�t� for p�0 is

qp�t� =
1

�1�p� − �2�p�
�� dt��B0�p,t�� + B1�p,t����exp��1�p�

��t − t��� − exp��2�p��t − t���� − qp�0�

���2�p�exp��1�p�t� − �1�p�exp��2�p�t��

+
�qp�0�

�t
�exp��1�p�t� − exp��2�p�t��� .

The fluctuating force is B0�p , t�=�ds A�s , t�up�s� /mL and
satisfies

�B0�p,t�B0�p�,t��� = 4
kT�

mN
��t − t����p,p�� .

An additional force arises from the fluctuations of qp in
the anchoring field: �3W /2m��ds up�s���z /�s�2 /L with
�B1�p , t��= �3W /2m�QpSp�t�. The related order parameter for
odd p is Qp=�ds up�s���up /�s�2 /L. For even p, Qp=0.

The time correlation function S�p , p� , t�= �qp�t�qp��t���
can be calculated using Eq. �12�. The system becomes sta-
tionary after a time �t�1 so that the correlation function for
�t�1 is:

S�p,p�,t → �� = S�p� =
4kTa

L
��
p

4 − �
p
2 − F1�−1��p,p�� .

2. Case p=0

A particular solution of the equation is given for p=0.
From Eq. �6�, the solution is u0�s�q0�t� with ��4u0 /�s4
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FIG. 1. Eigenfunctions of the bend and stretch elastic chain for
p=1 �dashes� and 2 �line�.
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−��2u0 /�s4=0. Due to the boundary conditions u0�s�=1 and
q0�t� is the solution of

�2q0�t�
�t2 + �

�q0�t�
�t

+ W/2m − F0/m − F1q�t�/m = B0�t� + B1�t� .

�14�

The fluctuating force is again composed of two terms. The
random white noise for the p=0 mode is B0�t�
=�ds A�s , t� /mL. The fluctuating wall friction force for the
p=0 mode is B1�t�= �3W /2m��ds��z /�s�2 /L. The orientation
correlation in the z direction is given by �p
=�ds��up�s� /�s�2 /L and the average fluctuating force due to
the anchoring field is �B1�t��= �3W /2m�
p=1�pSp�t�. In the
following �B1�t��= �3W /2m�� with �=
p�pSp�t�.

The frequencies are found from the equation of motion
�14�. For F1=0, �1=0, �2=−�. For F1�0,

�1,2 = − �/2 � �
�2 + 4F1/m�/2. �15�

For F1=0 the solution for q0�t� is

q0�t� =
1

�
�� dt��F0/m − W/2m + B0�t�� + B1�t����1

− exp���t� − t��� + q0�0� +
�q0�0�

�t
�1 − exp�− �t��� .

For F1�0 the solution for q0�t� is

q0�t� =
1

�1 − �2
�� dt��B0�t�� + B1�t����exp��1�t − t���

− exp��2�t − t���� − q0�0���2 exp��1t�

− �1 exp��2t�� +
�q0�0�

�t
�exp��1t� − exp��2t���

− F0/F1 + W/2F1.

The dynamics of the macromolecule can now be discussed.

C. The polymer dynamics

The random motion of the elastic chain is superimposed
on the orientation by the pore walls and drift caused by the
electrostatic forces. The average motion of the center of mass
is found from Zg�t�= ��ds z�s , t� /L�= �q0�t��. Using the initial
conditions Zg�t=0�=Zg�0�, �Zg�t=0� /�t=v0, the center of
mass at time t is located at

Zg�t� = Zg�0� + v0�1 − exp�− �t��/� + �F0 + W�3� − 1�/2�

���t + exp�− �t� − 1�/m�2 �16�

for F1=0, and for F1�0,

Zg�t� = Zg�0�
�1 exp �2t − �2 exp �1t

�1 − �2

+
v0�exp �1t − exp �2t�

�1 − �2

+ ��1 exp �2t − �2 exp �1t

�1 − �2
− 1�

��F0/F1 + W�3� − 1�/2F1� .

As the polymer diffuses through the pore the initial veloc-
ity decays and the average monomer velocity ��ds v�s�� /L
=�Zg�t� /�t contains a contribution from the pore wall inter-
action.

A measure of the extension along z is the z component of
the center to end distance vector: Rz�t�= �z�L /2, t�−z�0, t�� so
that Rz�t�=
p=1�up�L /2�−up�0���qp�t��. The initial orienta-
tion is chosen to be isotropic, Rz�0�=0 and dRz /dt=0. Using
Eqs. �10� and �12�, we calculate

Rz�t� =
3W

2m 
 �up�L/2� − up�0��
QpS�p�

�1�p��2�p�

���2�p�exp��1�p�t� − �1�p�exp��2�p�t�
�1�p� − �2�p�

+ 1� .

For short times t��1 the extension is defined by the initial
conditions:

Rz�t� = Rz�0� + t
�Rz�0�

�t
,

and at long times t��1, Rz reaches a constant value Rz���,

Rz��� = 3W

p=1

�up�L/2� − up�0��
S�p�Qp

��
p�4 − ��
p�2 − F1
.

The initial monomer positions and initial polymer confor-
mation are not fixed. The initial conditions are needed only
for average chain properties. Here, the center of gravity
Zg�0� is positioned at −L /2 from the pore entrance and the
average velocity of the pore chain is dZg�0� /dt=v0. Translo-
cation is said to occur at t=� when Zg���=H+L and most of
the polymer chain has exited the pore. The total pore field is
set to zero outside the pore. Time-dependent effects are not
considered in the narrow transition region close to the pore
exit and entrance, where some of the chain is under the in-
fluence of the pore electric field but does not yet sense ori-
entation by wall atoms. The assumption is used that on en-
tering the pore the stationary average orientation of each
monomer is established rapidly within �−1.

III. DISCUSSION

A. Effect of chain elasticity

The dynamics of flexible stretch elastic chains are well
known: the normal modes are given by a Fourier series with
appropriate boundary conditions up�s�=cos�p
s /L�. The
equilibrium average ��¯�� of the mode coordinates deter-
mines the stretch elastic coefficient of the p mode from eq-
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uipartition �13�; the end to end distance is ��R2��=La and
�=kT /3.

Bend elasticity adds the exponential functions to describe
the polymer modes and a typical conformation, given in Eq.
�11�, is shown in Fig. 1. Here the zero-order “rigid rod”
mode proportional to s is the solution of zero bend energy
and maximum stretch energy and is not retained �17,40,41�.
For semirigid chains, the stretch elastic coefficient is set to
zero and the chain avoids bend deformations by increasing
the effective size of the polymer chain. In the wormlike
chain model, only those chain conformations that satisfy the
condition of constant length or �dr� /ds�=1 are considered in
the calculation of the probability distribution �15�. The bend
elastic coefficient is determined from the equilibrium distri-
bution of ��qp

2�� for t→� and the equilibrium end to end
distance is found. The bend elastic coefficient is then simply
related to the correlation length b of the chain orientation:
�=kTba. In the rigid chain limit, L /b�1; the persistence
length b is large and the end to end distance of the bend
chain is calculated as ��R2�� /L2�1. In DNA the persistence
length is given as b /a=80, and using b=56 nm and a
=0.7 nm from the molecular dynamics simulation to which
results will be compared, then b /L=4, L /a=20�11�.

The intermediate case of finite stretch and bend has been
investigated �5–7,17–19,21� and by use of the appropriate
eigenfunctions chain dynamics were studied in the presence
of external fields. The bend elastic constant changes the time
evolution of the polymer modes with a strong dependence of
the frequency on L4 and not L2 as for stretch polymers. Finite
stretch combined with bend modifies the frequencies and de-
cay times of the polymer modes. The equilibrium end to end
distance is found as ��R2��= �3kTa /L�
p��
p

4 −�
p
2�−1.

For weak bend, � /�L2�1, the end to end distance of
stretch elastic chains is recovered. In the case of rigid chains
with strong bend, � / ��L2��1, the contributions from the
bend and stretch modes compensate �19,21� and the end to
end distance is determined mainly by the antisymmetric
mode 
pL=
. Setting ��R2��=L2 the bend elastic coefficient
�=6kT�32aL /
4� is then found to lie close to the value of
DNA in the simulation. From � /kT=ab, the value b /L=2
will be used here with L /a=20. Equilibrium properties of
bend elastic chains in the stationary limit of the normal mode
analysis will not be equivalent to the same quantities calcu-
lated in the wormlike chain model since an average over
conformations with a different set of restrictions is per-
formed. The two approaches will be equal only if the sam-
pling in both cases is sufficiently thorough to capture typical
behavior. The parameter � is a measure of the deviation from
the geometric wormlike chain model.

B. Effect of friction

The effective friction coefficient determines the decay
times for polymer dynamics on entering and leaving the
pore. The value can be estimated from the diffusion constant
D=kT /m� of the single chain of degree of polymerization
L /a in the relevant solvent. Neglect of the hydrodynamic
interaction is justified for sufficiently wide pores. From a
reasonable value of diffusion constant D=10−6 cm2 s−1 and

monomer mass m=10−21 g, the monomer friction coefficient
is found to be of the order of 1013 s−1. A good fit of simula-
tion to experimental results was found for �=1016 s−1 �42�.

C. Effect of electric field

The electric field inside the pore is given by Eq. �3� and
plotted in Fig. 2. The similarity with the field obtained by
molecular dynamics �MD� simulation �11� for a synthetic
nanopore is visible and the scaling law in E�z� /E0= f�z /H� is
satisfied. A small variation of the gradient of the electric field
in z justifies the expansion used in the calculation and is
shown in Fig. 3.

In the simulation R /H=0.2 and the variation of the elec-
tric field gradient is large, as shown in Fig. 3. In order to
accelerate the translocation from milliseconds to nanosec-
onds, the applied voltage of the simulation is 1.4 V; typically

0 0.2 0.4 0.6 0.8 1
0.4

0.5
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0.7

0.8

0.9
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z/H
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)ε
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/E
0

FIG. 2. Induced pore electric field E�z� relative to the applied
electric field in a solvent of dielectric constant �s as a function of
distance z on the pore axis for different pore geometries R /H=0.2
�diamonds�, 0.5 �crosses�, and 1 �squares� for �m /�s=0.05. The pore
dimensions are R, radius; H, height. The membrane dielectric con-
stant is �m.
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FIG. 3. Gradient dE�z� /dz of the induced pore electric field E�z�
relative to the applied electric field in the solvent of dielectric con-
stant �s as a function of distance z on the pore axis for different pore
geometries R /H=0.2 �diamonds�, 0.5 �crosses�, and 1 �squares�.
The pore dimensions are R, radius; H, height.
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in experiments a voltage of the order of millivolts is applied
�11�. To compare results, values of F0 /eE0=0.12, F1H /eE0
=−7, and E0=106 V /cm are obtained from the simulation
and F0 /eE0=0.1, F1H /eE0=−0.33 from Eq. �3� for H
=5 nm, R=1 nm. Outside the pore, chain translation is due
to acceleration by the uniform applied field and the chain
arrives at the pore entrance with a velocity v0=eE0 /�sm�.
The motion of the center of mass of the chain inside the pore
is plotted in Fig. 4. The chain motion is initially linear in
time, and after a time �−1 the chain motion is driven by the
internal pore field with a velocity v�=F0 /m�+W�3�
−1� /2m�.

The large electric force of the simulation dominates the
translation of the chain through the pore and in particular the
field gradient over the uniform field. The translocation time �
is measured by the time for the center of mass to exit the
pore with Zg���=H+L and �=m��H+L� /F0. The transloca-
tion time is inversely proportional to the applied field and
proportional to the polymer length as found in experiment.
Outside the pore, the velocity of the polymer center of mass
returns to the value v0 within �−1.

For experimental fields of the order of 1 V /cm or less, the
dynamics are dominated by the force due to the pore wall,
the motion is linear in time with v�=W�3�−1� /2m�, and
translocation times of the order of microseconds are ob-
tained.

Experiments have been made in the presence of an optical
trap placed at the end of the pore �1�. A field is created
proportional to the distance of the chain to the pore end as
given by the term in F1. The optical trap affects the chain
velocity and the time needed to block the polymer within the
pore is smaller the larger the strength of the trap. The chain
motion shown in Fig. 4 is initially linear in time but stops at
a finite stationary value after a time tc=m� / �−F1�, inversely
proportional to the field constant F1, and which in the present
model of independent monomer motion does not depend on
the ratio of pore size to polymer length. If the chain exits the
pore before this time is reached, then the translocation time
is calculated from the initial velocity as �= ��m���H

+L� /eE0. Then, as before, the translocation time is inversely
proportional to the applied field and proportional to the poly-
mer length.

D. Effect of the pore walls

The interaction with the pore walls accelerates the trans-
lation of the polymer chain and contributes to the motion of
the center of mass. For strong bend and weak stretch, the
order parameter is calculated from Eq. �10�:

� = 

p even

�
p
2 + 3
p/L�S�p� + 


p odd
�
p

2 + 4
p/L�S�p�

+ ��
/L�2 + 3
/�L2��S�
/L� .

The contribution from the odd-parity mode with 
p=
 /L
again dominates. For the parameters of the DNA simulation,
� lies close to 0.4 and for W /mL�2=10−3 the velocity term
from the pore wall friction is an order of magnitude smaller
than that of the induced electric field in the pore. The wall
friction affects the polymer conformation and the extension
of the chain increases in the z direction. The order parameter
is calculated as Qp=2
p�1+cosh 
pL� / �5L cosh 
pL /2�. The
evolution with time of the projection of the center to end
vector along the pore axis is plotted in Fig. 5 �parameters as
in Fig. 4�. The extension initially increases slowly with time;
the rapidly damped vibrations due to the polymer modes are
not shown. The frequencies of the vibrating polymer modes
for large p are �p

2 = �� /m��
p�4 so that �p= �2p+1�2

�106 s−1. After a time of the order of �1�p=1�−1, a fixed
finite value of the projection is reached, which depends on
the effective wall interaction. After exiting the pore the ex-
tension decays to the value of free chains Rz=0 within a time
�−1. The maximum average extension of the polymer on ex-
iting the pore at � is about 0.01 of the chain length for a
friction force W /m�2L=10−3. These values correspond to an
average of the center to end vector projected onto the pore
axis; local order may be much greater. For large pores it was
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FIG. 4. Motion of the center of mass Zg /L of the polymer of
length L as a function of time �t and for different values of stiffness
of the optical trap: F1 /m�2=0 �line�, −0.1 �dots�, and −0.2 �dashes�.
The straight upper line corresponds to the translocation time.
F0 /mL�2=0.125, W /mL�2=10−3.
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FIG. 5. Projection Rz /L of the center to end distance of the
polymer of length L �L /a=20� as a function of time �t and for
different values of stiffness of the optical trap: F1 /m�2=0 �line�,
−0.1 �dots�, −0.2 �dashes� in a wall potential W / �mL�2�=10−3. The
dash dot line corresponds to the translocation time.
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shown in a molecular dynamics simulation �10� that ordering
of the polymer is large mainly when the chain is located a
few nanometers from the pore walls. The extension consists
here of orientation of the monomers as well as a change of
monomer length. For experimental fields of the order of
1 V /cm or less, linear time dependence of the chain exten-
sion is again rapidly established and �Rz / �t =3WL /2bm�.
Large extension of the polymer chain is possible due to
translocation times of the order of microseconds.

In the presence of the optical trap, the stationary chain
extension is reached in a time inversely proportional to the
field constant tc��m / �−F1�. The extension Rz is blocked at a
value given by the ratio W / �−F1� of the wall force to the
field strength. For F1 /m�2=−0.1 the maximum extension is
0.5% and the time needed to block the chain and reach maxi-
mum extension is close to the translocation time � as seen in
Fig. 4.

IV. CONCLUSIONS

In this paper we have examined the motion of a semirigid
polymer in a nanopore. The improvements of the present
model go beyond the flexible model by simply increasing the
effective monomer length �or decreasing the stretch elastic-
ity� to a value consistent with the persistence length. In con-
trast to flexible polymers described by a stretch elasticity,
bend elastic chains can be oriented in an external field, here
the anchoring field created by the pore atoms. For anchoring
of the polymer parallel to the pore axis, the walls of the pore
must not be smooth. Surface roughness is consistent with the
complex potential profiles of synthetic and natural pores
where internal sites, trapped charges, and complex structure
occur. For example, silicon dioxide surfaces can have a nega-
tive charge density possibly neutralized by counterion con-
densation. The mean field approximation assumed for the
wall interaction requires that temporary adsorption of mono-
mers onto the pore walls translates into an effective average
force suitable if a sufficient number of weak, rapidly fluctu-
ating bonds is created during passage through the pore. In
narrow pores with strong interaction with the polymer, the
variation of the adsorption potential perpendicular to the
pore walls along x and y is not negligible. Motion of the
monomers along the pore axis is affected and cannot be de-
coupled as in the present model.

The transition time for the polymer to pass through the
nanopore is determined mainly by the electric field within
the pore and the effective pore wall interaction. The drift
through the pore is superimposed on random damped motion
of the monomers and a continuous change of conformation.
The electric field gradient inside the pore couples to the di-
poles of the chain and decreases the time required for trans-
location inside the pore. In a strong electric field gradient,

exploitation of the effect of the different base dipole mo-
ments on the polymer dynamics appears feasible. Applica-
tion of a force proportional to the distance of the exit to the
end of the pore such as an optical trap slows down the mo-
tion, and reduces the chain response to the wall potential and
the extension along the pore axis. This technique in combi-
nation with more complex pore geometry may prove useful
in future nanopore studies.

A vast amount of experimental, theoretical and simulation
work exists for DNA translocation. The two approaches of
phenomenological modeling �as used here� and molecular
dynamics are complementary. On the one hand, the phenom-
enological description of polymer dynamics makes it pos-
sible to study dependence on important parameters of the
system such as pore length, geometry, and applied field, even
for long times. But for more detailed knowledge such as the
effect of atomistic structure a description based on molecular
dynamics on short time scales cannot be avoided.

DNA is a well-known semirigid polymer and Langevin
dynamics based on bend elasticity should provide a good
qualitative picture and help to determine optimal conditions
for a given experiment.

APPENDIX

The set up is given in Fig. 6. The field is approximated by
the field induced by surface charges on the upper and lower
plates superimposed on the dielectric cavity formed by the
pore.

First the membrane of dielectric constant �m is replaced
by charged surfaces at separation H with induced charge ��
on the upper and lower surfaces. The cylinder of radius R,
charged on upper and lower disk surfaces, is removed to
form the pore and then replaced by the applied electric field
E0 in the dielectric medium of dielectric constant �s.

-σ

+σ

z

ε s
E 0

=

- +

- σ

+σ
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ε m

FIG. 6. The components of the electric field within the pore.
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